Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing.

bioRxiv : the preprint server for biology
Authors
Abstract

Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.

Year of Publication
2024
Journal
bioRxiv : the preprint server for biology
Date Published
03/2024
DOI
10.1101/2024.03.03.583177
PubMed ID
38496583
Links