A versatile information retrieval framework for evaluating profile strength and similarity.

Nature communications
Authors
Abstract

Large-scale profiling assays capture a cell population's state by measuring thousands of biological properties per cell or sample. However, evaluating profile strength and similarity remains challenging due to the high dimensionality and non-linear, heterogeneous nature of measurements. Here, we develop a statistical framework using mean average precision (mAP) as a single, data-driven metric to address this challenge. We validate the mAP framework against established metrics through simulations and real-world data, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we use mAP to assess a sample's phenotypic activity relative to controls, as well as the phenotypic consistency of groups of perturbations (or samples). We evaluate the framework across diverse datasets and on different profile types (image, protein, mRNA), perturbations (CRISPR, gene overexpression, small molecules), and resolutions (single-cell, bulk). The mAP framework, together with our open-source software package copairs, is useful for evaluating high-dimensional profiling data in biological research and drug discovery.

Year of Publication
2025
Journal
Nature communications
Volume
16
Issue
1
Pages
5181
Date Published
06/2025
ISSN
2041-1723
DOI
10.1038/s41467-025-60306-2
PubMed ID
40467541
Links