Rapid epigenomic classification of acute leukemia.
Authors | |
Abstract | Acute leukemia requires precise molecular classification and urgent treatment. However, standard-of-care diagnostic tests are time-intensive and do not capture the full spectrum of acute leukemia heterogeneity. Here, we developed a framework to classify acute leukemia using genome-wide DNA methylation profiling. We first assembled a comprehensive reference cohort (n = 2,540 samples) and defined 38 methylation classes. Methylation-based classification matched standard-pathology lineage classification in most cases and revealed heterogeneity in addition to that captured by genetic categories. Using this reference, we developed a neural network (MARLIN; methylation- and AI-guided rapid leukemia subtype inference) for acute leukemia classification from sparse DNA methylation profiles. In retrospective cohorts profiled by nanopore sequencing, high-confidence predictions were concordant with conventional diagnoses in 25 out of 26 cases. Real-time MARLIN classification in patients with suspected acute leukemia provided accurate predictions in five out of five cases, which were typically generated within 2 h of sample receipt. In summary, we present a framework for rapid acute leukemia classification that complements and enhances standard-of-care diagnostics. |
Year of Publication | 2025
|
Journal | Nature genetics
|
Date Published | 09/2025
|
ISSN | 1546-1718
|
DOI | 10.1038/s41588-025-02321-z
|
PubMed ID | 40983754
|
Links |