Dual membrane receptor degradation via folate receptor targeting chimera.

Nature communications
Authors
Abstract

Cancer drug resistance poses a significant challenge in oncology, often driven by intricate cross-talk among membrane-bound receptors that compromise mono-targeted therapies. We develop a dual membrane receptor degradation strategy leveraging Folate Receptor α (FRα) to address this issue. Folate Receptor α Targeting Chimeras-dual (FolTAC-dual) are engineered degraders designed to selectively and simultaneously degrade distinct receptor pairs: (1) EGFR/HER2 and (2) PD-L1/VISTA. Through modular optimization of modality configurations and geometries, we identify the "string" format as the most effective construct. Mechanistic studies demonstrate an ~85% increase in EGFR-binding affinity compared to the conventional knob-into-hole design, likely contributing to the improved efficiency of dual-target degradation. Proof-of-concept studies reveal that EGFR and HER2 FolTAC-dual effectively counteracts resistance in Trastuzumab/Lapatinib-resistant HER2-positive breast cancer models, while PD-L1 and VISTA FolTAC-dual rejuvenates immune responses in PD-L1 antibody-resistant syngeneic mouse models. These findings establish FolTAC-dual as a promising dual-degradation platform for clinical translation.

Year of Publication
2025
Journal
Nature communications
Volume
16
Issue
1
Pages
8804
Date Published
10/2025
ISSN
2041-1723
DOI
10.1038/s41467-025-63882-5
PubMed ID
41038820
Links