Disease-linked regulatory DNA variants and homeostatic transcription factors in epidermis.

Nature communications
Authors
Abstract

Identifying noncoding single nucleotide variants (SNVs) in regulatory DNA linked to polygenic disease risk, the transcription factors (TFs) they bind, and the genes they dysregulate is a goal in polygenic disease research. Here, we use massively parallel reporter analysis of 3451 SNVs linked to risk for polygenic skin diseases with disrupted epidermal homeostasis to identify 355 differentially active SNVs (daSNVs). daSNV target gene analysis, combined with daSNV editing, underscored dysregulated epidermal differentiation as a shared pathomechanism. CRISPR knockout screens of 1772 human TFs revealed 123 TFs essential for epidermal homeostasis, highlighting ZNF217 and CXXC1. Population sampling CUT&RUN of 27 homeostatic TFs identified allele-specific DNA binding (ASB) differences at daSNVs enriched near epidermal homeostasis and monogenic skin disease genes, with notable representation of SP/KLF and AP-1/2 TFs. High TF-occupancy promoters were "buffered" against ASB. This resource implicates dysregulated binding of specific homeostatic TF families in risk for diverse polygenic skin diseases.

Year of Publication
2025
Journal
Nature communications
Volume
16
Issue
1
Pages
8387
Date Published
09/2025
ISSN
2041-1723
DOI
10.1038/s41467-025-63070-5
PubMed ID
40998781
Links