Correcting for Genomic Inflation Leads to Loss of Power in Large-Scale Genome-Wide Association Study Meta-Analysis.

Genetic epidemiology
Authors
Keywords
Abstract

Inflation in genome-wide association studies (GWAS) summary statistics represents a major challenge, for which correction methods have been developed. These include the genomic control (GC) method, which uses the λ-value to correct summary statistics, and the linkage disequilibrium score regression (LDSR) method, which uses the LDSR intercept. By using type 2 diabetes (T2D) as an exemplar, we explore factors influencing λ-values and the impact of these corrections on association signals. We find that larger sample sizes increase λ-values due to increased captured polygenicity, while including lower frequency variants decreases λ-values due to reduced power. Comparing T2D genetic associations described in overlapping GWAS meta-analyses of increasing sample size, we find that GC correction reduces the false positive rate and leads to the loss of robust associations. In one of the largest meta-analysis, GC correction results in 39.7% loss of independent loci, substantially reducing the number of detected associations. In comparison, the LDSR intercept correction leads to a loss of up to 25.2% of the independent loci, being therefore less conservative than the GC correction. We conclude that in large, well-powered GWAS meta-analysis of polygenic traits, both GC and LDSR intercept correction leads to power loss, highlighting the need for improved genomic inflation correction methods.

Year of Publication
2025
Journal
Genetic epidemiology
Volume
49
Issue
6
Pages
e70016
Date Published
09/2025
ISSN
1098-2272
DOI
10.1002/gepi.70016
PubMed ID
40767503
Links