In vivo directed evolution of an ultrafast Rubisco from a semianaerobic environment imparts oxygen resistance.

Proceedings of the National Academy of Sciences of the United States of America
Authors
Keywords
Abstract

Carbon dioxide (CO) assimilation by the enzyme Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) underpins biomass accumulation in photosynthetic bacteria and eukaryotes. Despite its pivotal role, Rubisco has a slow carboxylation rate ([Formula: see text]) and is competitively inhibited by oxygen (O). These traits impose limitations on photosynthetic efficiency, making Rubisco a compelling target for improvement. Interest in Form II Rubisco from bacteria, which comprise a dimer or hexamer of large subunits, arises from their nearly fivefold higher [Formula: see text] than the average Rubisco enzyme. As well as having a fast [Formula: see text] (25.8 s at 25 °C), we show that Rubisco (GWS1B) is extremely sensitive to O inhibition, consistent with its evolution under semianaerobic environments. We therefore used an in vivo mutagenesis-mediated screening pipeline to evolve GWS1B over six rounds under oxygenic selection, identifying three catalytic point mutants with improved ambient carboxylation efficiency: Thr-29-Ala (T29A), Glu-40-Lys (E40K), and Arg-337-Cys (R337C). Full kinetic characterization showed that each substitution enhanced the CO affinity of GWS1B under oxygenic conditions by subduing oxygen affinity, leading to 25% (E40K), 11% (T29A), and 8% (R337C) enhancements in carboxylation efficiency under ambient O at 25 °C. By contrast, under the near anaerobic natural environment of , the carboxylation efficiency of each mutant was impaired ~16%. These findings demonstrate the efficacy of artificial directed evolution to access distinctive regions of catalytic space in Rubisco.

Year of Publication
2025
Journal
Proceedings of the National Academy of Sciences of the United States of America
Volume
122
Issue
27
Pages
e2505083122
Date Published
07/2025
ISSN
1091-6490
DOI
10.1073/pnas.2505083122
PubMed ID
40587785
Links