Contaminated drinking water facilitates Escherichia coli strain-sharing within households in urban informal settlements.

Nature microbiology
Authors
Abstract

Identifying bacterial transmission pathways is crucial to inform strategies that limit the spread of pathogenic and antibiotic-resistant bacteria. Here we assessed Escherichia coli strain-sharing and overlap of antibiotic resistance genes (ARGs) across humans, poultry, canines, soil, and drinking water within and between households in urban informal settlements in Nairobi, Kenya. We collected 321 samples from 50 households with half having access to chlorinated water. We performed Pooling Isolated Colonies-seq, which sequences pools of up to five E. coli colonies per sample to capture strain diversity. Pooling Isolated Colonies-seq captured 1,516 colonies and identified 154 strain-sharing events, overcoming limitations of single-isolate sequencing and metagenomics. Within households, strain-sharing rates and resistome similarities across sample types were strongly correlated, suggesting clonal transmission of ARGs. E. coli isolated from the environment carried clinically relevant ARGs. Strain-sharing was rare between animals and humans but frequent between humans and drinking water. E. coli-contaminated stored drinking water was associated with higher human-human strain-sharing within households. These results suggest that contaminated drinking water facilitates human to human strain-sharing, and water treatment can disrupt transmission.

Year of Publication
2025
Journal
Nature microbiology
Volume
10
Issue
5
Pages
1198-1209
Date Published
05/2025
ISSN
2058-5276
DOI
10.1038/s41564-025-01986-w
PubMed ID
40312516
Links