Multi-omics analysis of a pig-to-human decedent kidney xenotransplant.

Nature
Authors
Abstract

Organ shortage remains a major challenge in transplantation, and gene-edited pig organs offer a promising solution. Despite gene-editing, the immune reactions following xenotransplantation can still cause transplant failure. To understand the immunological response of a pig-to-human kidney xenotransplantation, we conducted large-scale multi-omics profiling of the xenograft and the host's blood over a 61-day procedure in a brain-dead human (decedent) recipient. Blood plasmablasts, natural killer (NK) cells, and dendritic cells increased between postoperative day (POD)10 and 28, concordant with expansion of IgG/IgA B-cell clonotypes, and subsequent biopsy-confirmed antibody-mediated rejection (AbMR) at POD33. Human T-cell frequencies increased from POD21 and peaked between POD33-49 in the blood and xenograft, coinciding with T-cell receptor diversification, expansion of a restricted TRBV2/J1 clonotype and histological evidence of a combined AbMR and cell-mediated rejection at POD49. At POD33, the most abundant human immune population in the graft was CXCL9+ macrophages, aligning with IFN-γ-driven inflammation and a Type I immune response. In addition, we see evidence of interactions between activated pig-resident macrophages and infiltrating human immune cells. Xenograft tissue showed pro-fibrotic tubular and interstitial injury, marked by S100A6, SPP1 (Osteopontin), and COLEC11, at POD21-POD33. Proteomics profiling revealed human and pig complement activation, with decreased human component after AbMR therapy with complement inhibition. Collectively, these data delineate the molecular orchestration of human immune responses to a porcine kidney, revealing potential immunomodulatory targets for improving xenograft survival.

Year of Publication
2025
Journal
Nature
Date Published
11/2025
ISSN
1476-4687
DOI
10.1038/s41586-025-09846-7
PubMed ID
41233547
Links