Mutation in IR or IGF1R produces features of long-lived mice while maintaining metabolic health.

JCI insight
Authors
Keywords
Abstract

Insulin/insulin growth factor signaling is a conserved pathway that regulates lifespan. However, long-lived loss-of-function mutants often produce insulin resistance, slow growth, and impair reproduction. Recently, a gain-of-function mutation in the kinase insert domain (KID) of the Drosophila insulin/IGF receptor was seen to dominantly extend lifespan without impairing insulin sensitivity, growth, or reproduction. This substitution occurs within residues conserved in mammalian insulin receptor (IR) and insulin growth factor-1 receptor (IGF-1R). We produced 2 knock-in mouse strains that carry the homologous KID Arg/Cys substitution in murine IR or IGF-1R, and we replicated these genotypes in human cells. Cells with heterodimer receptors of IR or IGF-1R induce receptor phosphorylation and phospho-Akt when stimulated with insulin or IGF. Heterodimer receptors of IR fully induce pERK, but ERK was less phosphorylated in cells with IGF-1R heterodimers. Adults with a single KID allele (producing heterodimer receptors) have normal growth and glucose regulation. At 4 months, these mice variably display hormonal markers that associate with successful aging counteraction, including elevated adiponectin and FGF21, as well as reduced leptin and IGF-1. Livers of IGF-1R females show decreased transcriptome-based biological age, which may point toward delayed aging and warrants an actual lifespan experiment. These data suggest that KID mutants may slow mammalian aging while they avoid the complications of insulin resistance.

Year of Publication
2025
Journal
JCI insight
Volume
10
Issue
24
Date Published
12/2025
ISSN
2379-3708
DOI
10.1172/jci.insight.189683
PubMed ID
41217825
Links