A disease-severity-responsive nanoparticle enables potent ghrelin messenger RNA therapy in osteoarthritis.
| Authors | |
| Abstract | Intra-articular RNA therapeutics have shown promise in osteoarthritis (OA); however, maximizing their efficacy requires targeted delivery to degenerating cartilage within focal lesions. As OA progresses, cartilage degeneration worsens, necessitating disease-responsive targeting with enhanced delivery in advanced stages. Here we develop an anionic nanoparticle (NP) strategy for targeting glycosaminoglycan loss, a hallmark of OA's progression that reduces cartilage's negative charge. These NPs selectively diffuse and accumulate into matrix regions inversely correlated with glycosaminoglycan content owing to reduced electrostatic repulsion, a strategy we term 'matrix inverse targeting' (MINT). In a mouse model of OA, intra-articular delivery of luciferase messenger RNA-loaded MINT NPs demonstrated disease-severity-responsive expression. Using this strategy, we delivered ghrelin mRNA, as ghrelin has shown chondroprotection properties previously. Ghrelin mRNA-loaded MINT NPs reduced cartilage degeneration, subchondral bone thickening and nociceptive pain. Our findings highlight the potential of ghrelin mRNA delivery as a disease-modifying therapy for OA and the platform's potential for lesion-targeted RNA delivery responsive to disease severity. |
| Year of Publication | 2026
|
| Journal | Nature nanotechnology
|
| Date Published | 01/2026
|
| ISSN | 1748-3395
|
| DOI | 10.1038/s41565-025-02101-0
|
| PubMed ID | 41535382
|
| Links |