Discovering metabolic disease gene interactions by correlated effects on cellular morphology.

Mol Metab
Authors
Abstract

OBJECTIVE: Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to identify novel disease-gene interactions during adipocyte differentiation.

METHODS: Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes. The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and used to construct morphologic profiles for each gene.

RESULTS: Over 10 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14 genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel protein-protein and gene regulatory interactions.

CONCLUSIONS: A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown.

Year of Publication
2019
Journal
Mol Metab
Volume
24
Pages
108-119
Date Published
2019 06
ISSN
2212-8778
DOI
10.1016/j.molmet.2019.03.001
PubMed ID
30940487
PubMed Central ID
PMC6531784
Links
Grant list
K08 DK102877 / DK / NIDDK NIH HHS / United States
MR/L002620/1 / Medical Research Council / United Kingdom