Grand Challenge: Mapping the regulatory wiring of the genome
Lander Lab, Ó³»´«Ã½ Grand Challenge: Mapping the regulatory wiring of the genome
Abstract: Our cells are controlled by complex molecular instructions encoded in the "noncoding" sequences of our genome, and alterations to these noncoding sequences underlie many common human diseases. The grammar of these noncoding sequences has been difficult to study, but the recent confluence of methods for both high-throughput measurement and high-throughput perturbation offers new opportunities to understand these sequences at a systems level. In this talk, I will highlight outstanding challenges in gene regulation where applying computational approaches in combination with emerging genomics datasets may allow us to build integrated maps that describe the regulatory wiring of the genome. As an example, I will present our efforts to experimentally and computationally map the functional connections between promoters and distal enhancers and use this information to understand human genetic variation in the noncoding genome.