Dashti HS, Redline S, Saxena R. Polygenic risk score identifies associations between sleep duration and diseases determined from an electronic medical record biobank. Sleep. 2019;42(3). doi:10.1093/sleep/zsy247
Galinsky KJ, Reshef YA, Finucane HK, et al. Estimating cross-population genetic correlations of causal effect sizes. Genet Epidemiol. 2019;43(2):180-188. doi:10.1002/gepi.22173
Delorey TM, Ziegler CGK, Heimberg G, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107-113. doi:10.1038/s41586-021-03570-8
Brabetz S, Leary SES, Gröbner SN, et al. A biobank of patient-derived pediatric brain tumor models. Nat Med. 2018;24(11):1752-1761. doi:10.1038/s41591-018-0207-3
Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for biobank-scale datasets. Nat Genet. 2018;50(7):906-908. doi:10.1038/s41588-018-0144-6
Zhu Z, Lee PH, Chaffin MD, et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet. 2018;50(6):857-864. doi:10.1038/s41588-018-0121-0
Vetter C, Dashti HS, Lane JM, et al. Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank. Diabetes Care. 2018;41(4):762-769. doi:10.2337/dc17-1933
Zhao Z, Bi W, Zhou W, VandeHaar P, Fritsche LG, Lee S. UK Biobank Whole-Exome Sequence Binary Phenome Analysis with Robust Region-Based Rare-Variant Test. Am J Hum Genet. 2020;106(1):3-12. doi:10.1016/j.ajhg.2019.11.012
Florez JC. Genetics and biobanks converge to resolve a vexing knowledge gap in diabetes. Lancet Diabetes Endocrinol. 2018;6(2):87-89. doi:10.1016/S2213-8587(17)30399-6
Gazal S, Loh PR, Finucane HK, et al. Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations. Nat Genet. 2018;50(11):1600-1607. doi:10.1038/s41588-018-0231-8