Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci. 2016;17(1):36-44. doi:10.1038/nrn.2015.2
Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407-11. doi:10.1126/science.aad5177
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403-7. doi:10.1126/science.aad5143
Lander ES. The Heroes of CRISPR. Cell. 2016;164(1-2):18-28. doi:10.1016/j.cell.2015.12.041
Tai DJC, Ragavendran A, Manavalan P, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19(3):517-22. doi:10.1038/nn.4235
Wong ASL, Choi GCG, Cui CH, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci U S A. 2016;113(9):2544-9. doi:10.1073/pnas.1517883113
Pardee K, Green AA, Takahashi MK, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell. 2016;165(5):1255-66. doi:10.1016/j.cell.2016.04.059
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573. doi:10.1126/science.aaf5573
Aguirre AJ, Meyers RM, Weir BA, et al. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discov. 2016;6(8):914-29. doi:10.1158/2159-8290.CD-16-0154
Sidik SM, Huet D, Ganesan SM, et al. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes. Cell. 2016;166(6):1423-1435.e12. doi:10.1016/j.cell.2016.08.019