Xiong T, Meister GE, Workman RE, et al. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci Rep. 2017;7(1):6732. doi:10.1038/s41598-017-06757-0
Weidmann AG, Choudhary A. Special Issue on the Chemical Biology of CRISPR. ACS Chem Biol. 2018;13(2):283-284. doi:10.1021/acschembio.8b00134
Segel M, Lash B, Song J, et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science. 2021;373(6557):882-889. doi:10.1126/science.abg6155
Scott DA, Zhang F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med. 2017;23(9):1095-1101. doi:10.1038/nm.4377
Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57-63. doi:10.1038/nature26155
Takeda DY, Spisák S, Seo JH, et al. A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell. 2018;174(2):422-432.e13. doi:10.1016/j.cell.2018.05.037
Maass PG, Barutcu R, Weiner CL, Rinn JL. Inter-chromosomal Contact Properties in Live-Cell Imaging and in Hi-C. Mol Cell. 2018;69(6):1039-1045.e3. doi:10.1016/j.molcel.2018.02.007
Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun. 2019;10(1):212. doi:10.1038/s41467-018-08224-4
Lareau CA, Clement K, Hsu JY, et al. Response to "Unexpected mutations after CRISPR-Cas9 editing in vivo". Nat Methods. 2018;15(4):238-239. doi:10.1038/nmeth.4541
Maji B, Gangopadhyay SA, Lee M, et al. A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell. 2019;177(4):1067-1079.e19. doi:10.1016/j.cell.2019.04.009