Ó³»­´«Ã½

Skip to main content
Home

Top menu

  • Careers
Search
  • Ó³»­´«Ã½
      1. This is Ó³»­´«Ã½ Learn about our mission, our values, our history, and partner institutions.
      2. Our impact Discover the impact of our research on human health.
      3. People Meet our members, staff scientists, fellows, leadership, and other Ó³»­´«Ã½ies.
      4. Join Ó³»­´«Ã½ Find out how to join the Ó³»­´«Ã½ as an employee or associate member.
      5. Contact us Find our contact information, directions to our buildings, and directory.
  • Research
      1. Disease areas Ó³»­´«Ã½ brings people together to advance the understanding and treatment of disease.
        1. Items Wpapp col
          • Brain Health
          • Cancer
          • Cardiovascular disease
          • Chronic disease
          • Diabetes
          • Infectious disease and microbiome
          • Kidney disease
          • Obesity
          • Rare disease
      2. Research areas Through programs spanning genetics, biology, artificial intelligence (AI), and therapeutic development, Ó³»­´«Ã½ researchers are making discoveries that drive biomedical science forward.
        1. Items Wpapp col
          • AI and machine learning
          • Chemical biology and therapeutics science
          • Genome regulation, cellular circuitry, and epigenomics
          • Immunology
          • Medical and population genetics
          • Metabolism
      3. Technology platforms Ó³»­´«Ã½'s technology platforms create, adapt, and scale technologies to accelerate science at the institute and beyond.
        1. Items Wpapp col
          • Data sciences
          • Drug discovery
          • Genetic perturbation
          • Genomics / Ó³»­´«Ã½ Clinical Labs
          • Imaging
          • Metabolomics
          • Proteomics
          • Spatial technologies
      4. Science
        1. Patient-partnered research Patients partner with our scientists to accelerate the pace of discovery and find better treatments.
        2. Partnering and licensing We work closely with pharmaceutical, biotech, and technology partners to accelerate the translation of our discoveries.
        3. Publications A catalog of scientific papers published by our members and staff scientists.
        4. Resources, services, and tools Key scientific datasets and computational tools developed by our scientists and their collaborators.
        5. Collaborations and consortia We join with institutions and scientists the world over to address foundational challenges in science and health.
  • Centers
      1. Carlos Slim Center for Health Research The Slim Center aims to bring the benefits of genomics-driven medicine to Latin America, gleaning new insights into diseases with relevance to the region.
      2. Gerstner Center for Cancer Diagnostics The Gerstner Center is developing next-generation diagnostic technology for cancer detection and tracking disease progression.
      3. Klarman Cell Observatory The Klarman Cell Observatory is systematically defining mammalian cellular circuits, how they work together to create tissues and organs, and are perturbed to cause disease.
      4. Merkin Institute for Transformative Technologies in Healthcare The Merkin Institute is supporting early-stage ideas aimed at advancing powerful technological approaches for improving how we understand and treat disease.
      5. Novo Nordisk Foundation Center for Genomic Mechanisms of Disease This center is developing new paradigms and technologies to scale the discovery of biological mechanisms of common, complex diseases, by facilitating close collaborations between the Ó³»­´«Ã½ and the Danish research community.
      6. Eric and Wendy Schmidt Center The EWSC is catalyzing a new field of interdisciplinary research at the intersection of data science and life science, aimed at improving human health.
      7. Stanley Center for Psychiatric Research The Stanley Center aims to reduce the burden of serious mental illness by contributing new insights into pathogenesis, identifying biomarkers, and paving the way toward new treatments.
  • Education and outreach
      1. Art and science connection Explore the connection between art and science and how we bring together artists and Ó³»­´«Ã½ scientists through our artist-in-residence program, gallery exhibitions, and ongoing public conversations.
      2. Ó³»­´«Ã½ Discovery Center Visit our free public educational space that showcases how researchers at the Ó³»­´«Ã½ and their colleagues around the world seek to understand and treat human disease.
      3. Learning resources Access free classroom materials and more for STEM educators, parents, students, tutors, and others.
      4. Public programs Discover remarkable stories of scientific progress, and explore the intersections of science, medicine, and society.
      5. Student opportunities Learn about Ó³»­´«Ã½'s mentored research offerings for high school students, college students, and recent college graduates.
      6. Visit Ó³»­´«Ã½ Come see what Ó³»­´«Ã½ is all about.
  • News
      1. News and insights Learn about breakthroughs from Ó³»­´«Ã½ scientists.
        1. Column
      2. Press room Contact our media relations team.
        1. Column
      3. Sign up for our newsletter Receive regular updates on Ó³»­´«Ã½ news, research and community.
  • Careers
  • Search
Interpreting MYH11 Copy Number Variation in Thoracic Aortic Aneurysm and Dissection: Insights From the Misannotation of Variants in Clinical Genetic Tests.
Schwartzman WE, Hujoel MLA, Channaoui N, Lee-Kim V, Loh PR, Gupta RM. Interpreting MYH11 Copy Number Variation in Thoracic Aortic Aneurysm and Dissection: Insights From the Misannotation of Variants in Clinical Genetic Tests. JACC. Case reports. 2025;30(6 Pt 1):102973. doi:10.1016/j.jaccas.2024.102973
Read more
The PS4-likelihood ratio calculator: flexible allocation of evidence weighting for case-control data in variant classification.
Rowlands CF, Garrett A, Allen S, et al. The PS4-likelihood ratio calculator: flexible allocation of evidence weighting for case-control data in variant classification. Journal of medical genetics. 2024. doi:10.1136/jmg-2024-110034
Read more
Genetic testing in early-onset atrial fibrillation.
Kany S, Jurgens SJ, Rämö JT, et al. Genetic testing in early-onset atrial fibrillation. European heart journal. 2024. doi:10.1093/eurheartj/ehae298
Read more
Aspiring toward equitable benefits from genomic advances to individuals of ancestrally diverse backgrounds.
Wang Y, He Y, Shi Y, et al. Aspiring toward equitable benefits from genomic advances to individuals of ancestrally diverse backgrounds. American journal of human genetics. 2024. doi:10.1016/j.ajhg.2024.04.002
Read more
Germline Cancer Susceptibility in Individuals with Melanoma.
Funchain P, Ni Y, Heald B, et al. Germline Cancer Susceptibility in Individuals with Melanoma. Journal of the American Academy of Dermatology. 2024. doi:10.1016/j.jaad.2023.11.070
Read more
Assessment of the Needs of Nephrology Divisions to Implement Return of Clinically Significant Research Genetic Results: A Survey of Nephrotic Syndrome Study Network (NEPTUNE) Investigators.
Fishbein JE, Dass LW, Lienczewski C, et al. Assessment of the Needs of Nephrology Divisions to Implement Return of Clinically Significant Research Genetic Results: A Survey of Nephrotic Syndrome Study Network (NEPTUNE) Investigators. Glomerular diseases. 2023;3(1):178-188. doi:10.1159/000533501
Read more
SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism.
Kory N, Wyant GA, Prakash G, et al. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science. 2018;362(6416). doi:10.1126/science.aat9528
Read more
Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of transcripts under balancing selection.
Ye CJ, Chen J, Villani AC, et al. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of transcripts under balancing selection. Genome Res. 2018;28(12):1812-1825. doi:10.1101/gr.240390.118
Read more
Distinguishing Variant Pathogenicity From Genetic Diagnosis: How to Know Whether a Variant Causes a Condition.
Biesecker LG, Nussbaum RL, Rehm HL. Distinguishing Variant Pathogenicity From Genetic Diagnosis: How to Know Whether a Variant Causes a Condition. JAMA. 2018;320(18):1929-1930. doi:10.1001/jama.2018.14900
Read more
Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss.
Oza AM, DiStefano MT, Hemphill SE, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat. 2018;39(11):1593-1613. doi:10.1002/humu.23630
Read more

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page ›â¶Äº

Address

Merkin Building
415 Main St.
Cambridge, MA 02142

Follow Us

Home

Sign up for our newsletter

Did you know?

Ó³»­´«Ã½'s gene-editing technologies—CRISPR-Cas9, base editing, and prime editing—are being tested in more than 25 clinical trials to treat or cure leukemias, rare genetic diseases, high cholesterol, and other conditions.

NIH-funded discoveries from the Ó³»­´«Ã½ are powering nearly 20 clinical trials from companies testing new treatments for diseases like cancer and heart disease.

Ó³»­´«Ã½ developed a technology — partly supported by NIH funding —  that can detect trace amounts of cancer DNA from blood tests and help cancer patients find out their risk of disease recurrence earlier.

Using NIH funding, the Ó³»­´«Ã½â€™s Rare Genomes Project has worked with more than 1,300 families from all 50 U.S. states to diagnose rare genetic diseases.

Ó³»­´«Ã½ Clinical Labs has directly partnered with tens of thousands of cancer patients to analyze their DNA and accelerate research.

During the COVID-19 pandemic, Ó³»­´«Ã½ launched a large-scale diagnostic testing lab that processed over 37 million tests and saved state and federal programs nearly $2 billion.

The Ó³»­´«Ã½'s Cancer Dependency Map helps cancer researchers and drug developers discover therapeutic targets for new cancer treatments.

gnomAD, a large human genetic variant reference database developed by the Ó³»­´«Ã½ with NIH funding, has contributed to over 13 million genetic disease diagnoses since its launch in 2014.

Datasets generated at the Ó³»­´«Ã½ were used to train AlphaGenome, a cutting-edge AI model from Google DeepMind that predicts how genetic variants affect gene regulation.

the FDA granted accelerated approval for a lung cancer drug that was developed with Ó³»­´«Ã½ science and is for patients who otherwise had few treatment options.

David Liu and his team used NIH funding to invent precise gene-editing technologies, including one that may vastly improve access to genetic therapies for patients with rare disease.

NIH-funded Ó³»­´«Ã½ research is shedding new light on the biological roots of many diseases, including Alzheimer’s, Parkinson’s, and Huntington’s disease.

Scientists with Ó³»­´«Ã½â€™s Stanley Center for Psychiatric Research have found key genetic factors for schizophrenia and bipolar disorder.

Ó³»­´«Ã½ scientists are using AI to design new antibiotics and other drugs, predict drug toxicity, and pinpoint genes, molecules, and cells that might be causing disease.

Ó³»­´«Ã½ Clinical Labs has sequenced nearly 900,000 whole human genomes, producing, on average, one human genome sequence every three minutes.

Ó³»­´«Ã½ Clinical Labs developed a new method for genome sequencing that costs 75 percent less than existing methods.

 Ó³»­´«Ã½ Clinical Labs is the largest genome sequencing center of its kind in the world.

Ó³»­´«Ã½ Clinical Labs has partnered with MyOme and Southern Research Institute in Birmingham, Alabama to provide free genetic tests to people in Alabama.

Ó³»­´«Ã½ Clinical Labs has partnered with Mass General Brigham and Everygene to provide no-cost genetic testing to people throughout the US with cardiomyopathy, a disorder that can cause sudden cardiac death.

Ó³»­´«Ã½ Clinical labs and Mass General Brigham used data from NIH’s All of Us program to develop a genetic test that predicts risk of eight different heart conditions. This test is now available to patients.

Thanks to NIH funding, Ó³»­´«Ã½ Clinical Labs is collaborating with scientists across the U.S. to sequence DNA from tens of thousands of children with cancer and birth defects to study common biological pathways.

Ó³»­´«Ã½ Clinical Labs holds the world record for fastest DNA sequencing, completing whole genome sequencing and analysis in less than four hours at their facility in Burlington, Massachusetts.

Footer menu

  • Report a concern
  • Contact Us
  • Privacy Policy

© Ó³»­´«Ã½ 2025