Merino J, Dashti HS, Li SX, et al. Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Mol Psychiatry. 2019;24(12):1920-1932. doi:10.1038/s41380-018-0079-4
Yang Y, Zhao H, Boomsma DI, et al. Molecular genetic overlap between migraine and major depressive disorder. Eur J Hum Genet. 2018;26(8):1202-1216. doi:10.1038/s41431-018-0150-2
Minică CC, Verweij KJH, van der Most PJ, et al. Genome-wide association meta-analysis of age at first cannabis use. Addiction. 2018;113(11):2073-2086. doi:10.1111/add.14368
Prins BP, Mead TJ, Brody JA, et al. Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6. Genome Biol. 2018;19(1):87. doi:10.1186/s13059-018-1457-6
Kowalec K, Wright GEB, Drögemöller BI, et al. Common variation near IRF6 is associated with IFN-β-induced liver injury in multiple sclerosis. Nat Genet. 2018;50(8):1081-1085. doi:10.1038/s41588-018-0168-y
Li G, MartÃnez-Bonet M, Wu D, et al. High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nat Genet. 2018;50(8):1180-1188. doi:10.1038/s41588-018-0159-z
Waage J, Standl M, Curtin JA, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018;50(8):1072-1080. doi:10.1038/s41588-018-0157-1
Florez JC. The pharmacogenetics of metformin. Diabetologia. 2017;60(9):1648-1655. doi:10.1007/s00125-017-4335-y
Nikkola E, Ko A, Alvarez M, et al. Family-specific aggregation of lipid GWAS variants confers the susceptibility to familial hypercholesterolemia in a large Austrian family. Atherosclerosis. 2017;264:58-66. doi:10.1016/j.atherosclerosis.2017.07.024
Manousaki D, Dudding T, Haworth S, et al. Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis. Am J Hum Genet. 2017;101(2):227-238. doi:10.1016/j.ajhg.2017.06.014