Kawada J, Kaneda S, Kirihara T, et al. Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons. Stem Cell Reports. 2017;9(5):1441-1449. doi:10.1016/j.stemcr.2017.09.021
Brennand KJ, Marchetto C, Benvenisty N, et al. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders. Stem Cell Reports. 2015;5(6):933-945. doi:10.1016/j.stemcr.2015.10.011
Palomo V, Perez DI, Roca C, et al. Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases. J Med Chem. 2017;60(12):4983-5001. doi:10.1021/acs.jmedchem.7b00395
Arlotta P, Berninger B. Brains in metamorphosis: reprogramming cell identity within the central nervous system. Curr Opin Neurobiol. 2014;27:208-14. doi:10.1016/j.conb.2014.04.007
Quadrato G, Brown J, Arlotta P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med. 2016;22(11):1220-1228. doi:10.1038/nm.4214
Haidet-Phillips AM, Roybon L, Gross SK, et al. Gene profiling of human induced pluripotent stem cell-derived astrocyte progenitors following spinal cord engraftment. Stem Cells Transl Med. 2014;3(5):575-85. doi:10.5966/sctm.2013-0153
Toma JS, Shettar BC, Chipman PH, et al. Motoneurons derived from induced pluripotent stem cells develop mature phenotypes typical of endogenous spinal motoneurons. J Neurosci. 2015;35(3):1291-306. doi:10.1523/JNEUROSCI.2126-14.2015
Schwarz-Romond T, Kiskinis E, Eggan K. Focus on induced pluripotency and cellular reprogramming. EMBO J. 2015;34(11):1435. doi:10.15252/embj.201591615
Sances S, Bruijn LI, Chandran S, et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci. 2016;19(4):542-53. doi:10.1038/nn.4273
Merkle FT, Ghosh S, Kamitaki N, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545(7653):229-233. doi:10.1038/nature22312