Lin JR, Izar B, Wang S, et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife. 2018;7. doi:10.7554/eLife.31657
Doan M, Vorobjev I, Rees P, et al. Diagnostic Potential of Imaging Flow Cytometry. Trends Biotechnol. 2018;36(7):649-652. doi:10.1016/j.tibtech.2017.12.008
Ter-Ovanesyan D, Kowal EJK, Regev A, Church GM, Cocucci E. Imaging of Isolated Extracellular Vesicles Using Fluorescence Microscopy. Methods Mol Biol. 2017;1660:233-241. doi:10.1007/978-1-4939-7253-1_19
To TL, Shu X. Detecting Activity at Different Length Scales: From Subdiffraction to Whole-Animal Activity. Biochemistry. 2017;56(39):5163-5164. doi:10.1021/acs.biochem.7b00788
Christiansen EM, Yang SJ, Ando M, et al. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell. 2018;173(3):792-803.e19. doi:10.1016/j.cell.2018.03.040
Guo SM, Veneziano R, Gordonov S, et al. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat Commun. 2019;10(1):4377. doi:10.1038/s41467-019-12372-6
Slegtenhorst BR, Ramirez ORF, Zhang Y, Dhanerawala Z, Tullius SG, GarcÃa-Cardeña G. A Mechano-Activated Cell Reporter System as a Proxy for Flow-Dependent Endothelial Atheroprotection. SLAS Discov. 2018;23(8):869-876. doi:10.1177/2472555218761101
Wagner BK, Carrinski HA, Ahn Y hoon, et al. Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening. J Am Chem Soc. 2008;130(13):4208-9. doi:10.1021/ja077656d
Blakely BL, Dumelin CE, Trappmann B, et al. A DNA-based molecular probe for optically reporting cellular traction forces. Nat Methods. 2014;11(12):1229-32. doi:10.1038/nmeth.3145
Chan CY, Zhao H, Pugh RJ, et al. Purinosome formation as a function of the cell cycle. Proc Natl Acad Sci U S A. 2015;112(5):1368-73. doi:10.1073/pnas.1423009112