Yuan Y, Van Allen EM, Omberg L, et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat Biotechnol. 2014;32(7):644-52. doi:10.1038/nbt.2940
Wilkerson MD, Cabanski CR, Sun W, et al. Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res. 2014;42(13):e107. doi:10.1093/nar/gku489
Wang Z, Zhu B, Zhang M, et al. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Hum Mol Genet. 2014;23(24):6616-33. doi:10.1093/hmg/ddu363
Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature. 2014;514(7520):54-8. doi:10.1038/nature13556
Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929-44. doi:10.1016/j.cell.2014.06.049
Ben-David U. Genomic instability, driver genes and cell selection: Projections from cancer to stem cells. Biochim Biophys Acta. 2015;1849(4):427-35. doi:10.1016/j.bbagrm.2014.08.005
Khan IA, Fraser A, Bray MA, et al. ProtocolNavigator: emulation-based software for the design, documentation and reproduction biological experiments. Bioinformatics. 2014;30(23):3440-2. doi:10.1093/bioinformatics/btu554
Streit M, Lex A, Gratzl S, et al. Guided visual exploration of genomic stratifications in cancer. Nat Methods. 2014;11(9):884-5. doi:10.1038/nmeth.3088
Jerby-Arnon L, Pfetzer N, Waldman YY, et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell. 2014;158(5):1199-209. doi:10.1016/j.cell.2014.07.027
Keane M, Craig T, Alföldi J, et al. The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. Bioinformatics. 2014;30(24):3558-60. doi:10.1093/bioinformatics/btu579