Kennedy AL, Vallurupalli M, Chen L, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget. 2015;6(30):30178-93. doi:10.18632/oncotarget.4903
Van Allen EM, W Y Lui V, Egloff AM, et al. Genomic Correlate of Exceptional Erlotinib Response in Head and Neck Squamous Cell Carcinoma. JAMA Oncol. 2015;1(2):238-44. doi:10.1001/jamaoncol.2015.34
Wu SC, Li LS, Kopp N, et al. Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2015;28(1):29-41. doi:10.1016/j.ccell.2015.06.005
Kwiatkowski DJ, Wagle N. mTOR Inhibitors in Cancer: What Can We Learn from Exceptional Responses? EBioMedicine. 2015;2(1):2-4. doi:10.1016/j.ebiom.2014.12.011
Ahronian LG, Sennott EM, Van Allen EM, et al. Clinical Acquired Resistance to RAF Inhibitor Combinations in BRAF-Mutant Colorectal Cancer through MAPK Pathway Alterations. Cancer Discov. 2015;5(4):358-67. doi:10.1158/2159-8290.CD-14-1518
Hahn CK, Berchuck JE, Ross KN, et al. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell. 2009;16(4):281-94. doi:10.1016/j.ccr.2009.08.018
Yoda A, Adelmant G, Tamburini J, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21(1):71-5. doi:10.1038/nm.3751
Tan L, Wang J, Tanizaki J, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A. 2014;111(45):E4869-77. doi:10.1073/pnas.1403438111
Hong YS, Kim J, Pectasides E, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS One. 2014;9(10):e109440. doi:10.1371/journal.pone.0109440
Tchaicha JH, Akbay EA, Altabef A, et al. Kinase domain activation of FGFR2 yields high-grade lung adenocarcinoma sensitive to a Pan-FGFR inhibitor in a mouse model of NSCLC. Cancer Res. 2014;74(17):4676-84. doi:10.1158/0008-5472.CAN-13-3218