Di Stefano B, Ueda M, Sabri S, et al. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods. 2018;15(9):732-740. doi:10.1038/s41592-018-0104-1
Lumpkin RJ, Gu H, Zhu Y, et al. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nat Commun. 2017;8(1):1171. doi:10.1038/s41467-017-01271-3
Zhou JY, Chen L, Zhang B, et al. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues. J Proteome Res. 2017;16(12):4523-4530. doi:10.1021/acs.jproteome.7b00362
Bark SKN, Ahmad R, Dantzler K, et al. Quantitative Proteomic Profiling Reveals Novel Surface Antigens and Possible Vaccine Candidates. Mol Cell Proteomics. 2018;17(1):43-60. doi:10.1074/mcp.RA117.000076
Cheng Z, Otto GM, Powers EN, et al. Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis. Cell. 2018;172(5):910-923.e16. doi:10.1016/j.cell.2018.01.035
Peckner R, Myers SA, Jacome AS, et al. Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics. Nat Methods. 2018;15(5):371-378. doi:10.1038/nmeth.4643
Franks A, Airoldi E, Slavov N. Post-transcriptional regulation across human tissues. PLoS Comput Biol. 2017;13(5):e1005535. doi:10.1371/journal.pcbi.1005535
Smith G, Gerszten RE. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation. 2017;135(17):1651-1664. doi:10.1161/CIRCULATIONAHA.116.025446
Schreiber SL, Nicolaou KC, Davies K. Diversity-oriented organic synthesis and proteomics. New frontiers for chemistry & biology. Chem Biol. 2002;9(1):1-2.
Ramanathan A, Schreiber SL. Multilevel regulation of growth rate in yeast revealed using systems biology. J Biol. 2007;6(2):3. doi:10.1186/jbiol56