ӳý

Skip to main content
Home

Top menu

  • Careers
Search
  • ӳý
      1. This is ӳý Learn about our mission, our values, our history, and partner institutions.
      2. Our impact Discover the impact of our research on human health.
      3. People Meet our members, staff scientists, fellows, leadership, and other ӳýies.
      4. Join ӳý Find out how to join the ӳý as an employee or associate member.
      5. Contact us Find our contact information, directions to our buildings, and directory.
  • Research
      1. Disease areas ӳý brings people together to advance the understanding and treatment of disease.
        1. Items Wpapp col
          • Brain Health
          • Cancer
          • Cardiovascular disease
          • Chronic disease
          • Diabetes
          • Infectious disease and microbiome
          • Kidney disease
          • Obesity
          • Rare disease
      2. Research areas Through programs spanning genetics, biology, artificial intelligence (AI), and therapeutic development, ӳý researchers are making discoveries that drive biomedical science forward.
        1. Items Wpapp col
          • AI and machine learning
          • Chemical biology and therapeutics science
          • Genome regulation, cellular circuitry, and epigenomics
          • Immunology
          • Medical and population genetics
          • Metabolism
      3. Technology platforms ӳý's technology platforms create, adapt, and scale technologies to accelerate science at the institute and beyond.
        1. Items Wpapp col
          • Data sciences
          • Drug discovery
          • Genetic perturbation
          • Genomics / ӳý Clinical Labs
          • Imaging
          • Metabolomics
          • Proteomics
          • Spatial technologies
      4. Science
        1. Patient-partnered research Patients partner with our scientists to accelerate the pace of discovery and find better treatments.
        2. Partnering and licensing We work closely with pharmaceutical, biotech, and technology partners to accelerate the translation of our discoveries.
        3. Publications A catalog of scientific papers published by our members and staff scientists.
        4. Resources, services, and tools Key scientific datasets and computational tools developed by our scientists and their collaborators.
        5. Collaborations and consortia We join with institutions and scientists the world over to address foundational challenges in science and health.
  • Centers
      1. Carlos Slim Center for Health Research The Slim Center aims to bring the benefits of genomics-driven medicine to Latin America, gleaning new insights into diseases with relevance to the region.
      2. Gerstner Center for Cancer Diagnostics The Gerstner Center is developing next-generation diagnostic technology for cancer detection and tracking disease progression.
      3. Klarman Cell Observatory The Klarman Cell Observatory is systematically defining mammalian cellular circuits, how they work together to create tissues and organs, and are perturbed to cause disease.
      4. Merkin Institute for Transformative Technologies in Healthcare The Merkin Institute is supporting early-stage ideas aimed at advancing powerful technological approaches for improving how we understand and treat disease.
      5. Novo Nordisk Foundation Center for Genomic Mechanisms of Disease This center is developing new paradigms and technologies to scale the discovery of biological mechanisms of common, complex diseases, by facilitating close collaborations between the ӳý and the Danish research community.
      6. Eric and Wendy Schmidt Center The EWSC is catalyzing a new field of interdisciplinary research at the intersection of data science and life science, aimed at improving human health.
      7. Stanley Center for Psychiatric Research The Stanley Center aims to reduce the burden of serious mental illness by contributing new insights into pathogenesis, identifying biomarkers, and paving the way toward new treatments.
  • Education and outreach
      1. Art and science connection Explore the connection between art and science and how we bring together artists and ӳý scientists through our artist-in-residence program, gallery exhibitions, and ongoing public conversations.
      2. ӳý Discovery Center Visit our free public educational space that showcases how researchers at the ӳý and their colleagues around the world seek to understand and treat human disease.
      3. Learning resources Access free classroom materials and more for STEM educators, parents, students, tutors, and others.
      4. Public programs Discover remarkable stories of scientific progress, and explore the intersections of science, medicine, and society.
      5. Student opportunities Learn about ӳý's mentored research offerings for high school students, college students, and recent college graduates.
      6. Visit ӳý Come see what ӳý is all about.
  • News
      1. News and insights Learn about breakthroughs from ӳý scientists.
        1. Column
      2. Press room Contact our media relations team.
        1. Column
      3. Sign up for our newsletter Receive regular updates on ӳý news, research and community.
  • Careers
  • Search
Comprehensive identification of mutational cancer driver genes across 12 tumor types.
Tamborero D, Gonzalez-Perez A, Perez-Llamas C, et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep. 2013;3:2650. doi:10.1038/srep02650
Read more
Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants.
Dichgans M, Malik R, König IR, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45(1):24-36. doi:10.1161/STROKEAHA.113.002707
Read more
Multilocus genetic risk score associates with ischemic stroke in case-control and prospective cohort studies.
Malik R, Bevan S, Nalls MA, et al. Multilocus genetic risk score associates with ischemic stroke in case-control and prospective cohort studies. Stroke. 2014;45(2):394-402. doi:10.1161/STROKEAHA.113.002938
Read more
Connecting Small Molecules with Similar Assay Performance Profiles Leads to New Biological Hypotheses.
Dančík V, Carrel H, Bodycombe NE, et al. Connecting Small Molecules with Similar Assay Performance Profiles Leads to New Biological Hypotheses. J Biomol Screen. 2014;19(5):771-81. doi:10.1177/1087057113520226
Read more
In vivo discovery of immunotherapy targets in the tumour microenvironment.
Zhou P, Shaffer DR, Arias DAA, et al. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature. 2014;506(7486):52-7. doi:10.1038/nature12988
Read more
A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests.
Schroeder FA, Lewis MC, Fass DM, et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS One. 2013;8(8):e71323. doi:10.1371/journal.pone.0071323
Read more
Integration of sequence data from a Consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene.
Okada Y, Diogo D, Greenberg JD, et al. Integration of sequence data from a Consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene. PLoS One. 2014;9(2):e87645. doi:10.1371/journal.pone.0087645
Read more
Detection and replication of epistasis influencing transcription in humans.
Hemani G, Shakhbazov K, Westra HJ, et al. Detection and replication of epistasis influencing transcription in humans. Nature. 2014;508(7495):249-53. doi:10.1038/nature13005
Read more
Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons.
Fischer K, Kettunen J, Würtz P, et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med. 2014;11(2):e1001606. doi:10.1371/journal.pmed.1001606
Read more
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381-6. doi:10.1038/nbt.2859
Read more

Pagination

  • Previous page ‹Ĺ
  • Page 1
  • Page 2
  • Page 3
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Next page ›ĺ

Address

Merkin Building
415 Main St.
Cambridge, MA 02142

Follow Us

Home

Sign up for our newsletter

Did you know?

In March of 2020, ӳý converted a clinical genetics processing lab into a large-scale COVID-19 testing facility in less than two weeks.

We've screened more than 1,275 cancer cell lines as part of the Cancer Dependency Map (DepMap).

ӳý Genomics Platform sequences a whole human genome every four minutes.

More than 11,000 individuals living with cancer in the United States and Canada have partnered with Count Me In to share their experiences and help accelerate cancer research.

The Drug Repurposing Hub is one of the most comprehensive and up-to-date biologically annotated collections of FDA-approved compounds in the world. Researchers anywhere can explore more than 6,000 drugs in the hub and search for possible new uses for them to jump-start new drug discovery.

In 2021, our sustainability efforts sent more than 80 percent of waste from the Genomics Platform to either a recycling facility or to an incineration plant that generates electricity.

Through ӳý's Scientists in the Classroom program, ӳý researchers visit every 8th grade classroom in Cambridge each year to talk about genetics and evolution.

Every summer, 18 high school students spend six weeks at ӳý working side-by-side with mentors on cutting-edge research.

In November 2022, ӳý’s Genomics Platform sequenced its 500,000th whole human genome, a mere four years after sequencing its 100,000th.

By the end of 2022, ӳý’s COVID-19 testing lab had processed more than 37 million tests.

Working with Addgene, ӳý has shared CRISPR genome-editing reagents with researchers at more than 3,200 institutions in 76 countries.

The NeuroGAP-Psychosis project, a collaboration between the Stanley Center for Psychiatric Research and Harvard T.H. Chan School of Public Health to study the genetics of severe mental illness, has recruited more than 42,000 participants in Ethiopia, Kenya, Uganda, and South Africa.

Footer menu

  • Report a concern
  • Contact Us
  • Privacy Policy

© ӳý 2025