Adib-Samii P, Devan W, Traylor M, et al. Genetic architecture of white matter hyperintensities differs in hypertensive and nonhypertensive ischemic stroke. Stroke. 2015;46(2):348-53. doi:10.1161/STROKEAHA.114.006849
Würtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131(9):774-85. doi:10.1161/CIRCULATIONAHA.114.013116
Ge T, Nichols TE, Ghosh D, et al. A kernel machine method for detecting effects of interaction between multidimensional variable sets: an imaging genetics application. Neuroimage. 2015;109:505-14. doi:10.1016/j.neuroimage.2015.01.029
Bavamian S, Mellios N, Lalonde J, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20(5):573-84. doi:10.1038/mp.2014.176
Tonomura N, Elvers I, Thomas R, et al. Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers. PLoS Genet. 2015;11(2):e1004922. doi:10.1371/journal.pgen.1004922
Liu H, Irwanto A, Fu X, et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat Genet. 2015;47(3):267-71. doi:10.1038/ng.3212
Kalim S, Clish CB, Wenger J, et al. A plasma long-chain acylcarnitine predicts cardiovascular mortality in incident dialysis patients. J Am Heart Assoc. 2013;2(6):e000542. doi:10.1161/JAHA.113.000542
Rhee EP, Clish CB, Ghorbani A, et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J Am Soc Nephrol. 2013;24(8):1330-8. doi:10.1681/ASN.2012101006
Kosmicki JA, Sochat V, Duda M, Wall DP. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl Psychiatry. 2015;5:e514. doi:10.1038/tp.2015.7
Galizia EC, Myers CT, Leu C, et al. CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain. 2015;138(Pt 5):1198-207. doi:10.1093/brain/awv052