de Boer CG, Ray JP, Hacohen N, Regev A. MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biol. 2020;21(1):134. doi:10.1186/s13059-020-02046-8
Raj B, Gagnon JA, Schier AF. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nat Protoc. 2018;13(11):2685-2713. doi:10.1038/s41596-018-0058-x
Hanna RE, Doench JG. A case of mistaken identity. Nat Biotechnol. 2018;36(9):802-804. doi:10.1038/nbt.4208
Yeo NC, Chavez A, Lance-Byrne A, et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods. 2018;15(8):611-616. doi:10.1038/s41592-018-0048-5
Meier JA, Zhang F, Sanjana NE. GUIDES: sgRNA design for loss-of-function screens. Nat Methods. 2017;14(9):831-832. doi:10.1038/nmeth.4423
Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. Mol Cell. 2017;67(4):633-645.e3. doi:10.1016/j.molcel.2017.06.035
Scott DA, Zhang F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med. 2017;23(9):1095-1101. doi:10.1038/nm.4377
Xiong T, Meister GE, Workman RE, et al. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci Rep. 2017;7(1):6732. doi:10.1038/s41598-017-06757-0
Cong L. CRISPR: Groundbreaking technology for RNA-guided genome engineering. Anal Biochem. 2017;532:87-89. doi:10.1016/j.ab.2017.05.005
Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Mol Cell. 2017;65(6):1109-1121.e3. doi:10.1016/j.molcel.2017.02.007