Pyzocha NK, Chen S. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chem Biol. 2018;13(2):347-356. doi:10.1021/acschembio.7b00800
Yeo NC, Chavez A, Lance-Byrne A, et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods. 2018;15(8):611-616. doi:10.1038/s41592-018-0048-5
Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. Mol Cell. 2017;67(4):633-645.e3. doi:10.1016/j.molcel.2017.06.035
Scott DA, Zhang F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med. 2017;23(9):1095-1101. doi:10.1038/nm.4377
Xiong T, Meister GE, Workman RE, et al. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci Rep. 2017;7(1):6732. doi:10.1038/s41598-017-06757-0
Komor AC, Badran AH, Liu DR. Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. 2018;13(2):383-388. doi:10.1021/acschembio.7b00710
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13(10):e1005807. doi:10.1371/journal.pcbi.1005807
Cong L. CRISPR: Groundbreaking technology for RNA-guided genome engineering. Anal Biochem. 2017;532:87-89. doi:10.1016/j.ab.2017.05.005
Tangprasertchai NS, Di Felice R, Zhang X, et al. CRISPR-Cas9 Mediated DNA Unwinding Detected Using Site-Directed Spin Labeling. ACS Chem Biol. 2017;12(6):1489-1493. doi:10.1021/acschembio.6b01137
Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Mol Cell. 2017;65(6):1109-1121.e3. doi:10.1016/j.molcel.2017.02.007