Fromer M, Pocklington AJ, Kavanagh DH, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179-84. doi:10.1038/nature12929
Melnikov A, Rogov P, Wang L, Gnirke A, Mikkelsen TS. Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes. Nucleic Acids Res. 2014;42(14):e112. doi:10.1093/nar/gku511
Olson DE, Udeshi ND, Wolfson NA, et al. An unbiased approach to identify endogenous substrates of "histone" deacetylase 8. ACS Chem Biol. 2014;9(10):2210-6. doi:10.1021/cb500492r
Schwartz S, Bernstein DA, Mumbach MR, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159(1):148-62. doi:10.1016/j.cell.2014.08.028
Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One. 2014;9(9):e108424. doi:10.1371/journal.pone.0108424
Yang L, Grishin D, Wang G, et al. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat Commun. 2014;5:5507. doi:10.1038/ncomms6507
Ran A, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186-91. doi:10.1038/nature14299
Isabella VM, Campbell AJ, Manchester J, et al. Toward the rational design of carbapenem uptake in Pseudomonas aeruginosa. Chem Biol. 2015;22(4):535-47. doi:10.1016/j.chembiol.2015.03.018
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481-5. doi:10.1038/nature14592
Mazitschek R, Patel V, Wirth DF, Clardy J. Development of a fluorescence polarization based assay for histone deacetylase ligand discovery. Bioorg Med Chem Lett. 2008;18(9):2809-12. doi:10.1016/j.bmcl.2008.04.007