Galinsky KJ, Reshef YA, Finucane HK, et al. Estimating cross-population genetic correlations of causal effect sizes. Genet Epidemiol. 2019;43(2):180-188. doi:10.1002/gepi.22173
Rhodes JA, Lane JM, Vlasac IM, Rutter MK, Czeisler CA, Saxena R. Association of DAT1 genetic variants with habitual sleep duration in the UK Biobank. Sleep. 2019;42(1). doi:10.1093/sleep/zsy193
Ge T, Chen CY, Doyle AE, et al. The Shared Genetic Basis of Educational Attainment and Cerebral Cortical Morphology. Cereb Cortex. 2019;29(8):3471-3481. doi:10.1093/cercor/bhy216
Elliott ML, Belsky DW, Anderson K, et al. A Polygenic Score for Higher Educational Attainment is Associated with Larger Brains. Cereb Cortex. 2019;29(8):3496-3504. doi:10.1093/cercor/bhy219
Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for biobank-scale datasets. Nat Genet. 2018;50(7):906-908. doi:10.1038/s41588-018-0144-6
Klarin D, Zhu QM, Emdin CA, et al. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat Genet. 2017;49(9):1392-1397. doi:10.1038/ng.3914
Gazal S, Loh PR, Finucane HK, et al. Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations. Nat Genet. 2018;50(11):1600-1607. doi:10.1038/s41588-018-0231-8
Diogo D, Tian C, Franklin CS, et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9(1):4285. doi:10.1038/s41467-018-06540-3
DeBoever C, Tanigawa Y, Lindholm ME, et al. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun. 2018;9(1):1612. doi:10.1038/s41467-018-03910-9
Nelson CP, Goel A, Butterworth AS, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49(9):1385-1391. doi:10.1038/ng.3913