Bota P, Thambiraj G, Bollepalli SC, Armoundas AA. Artificial Intelligence Algorithms in Cardiovascular Medicine: An Attainable Promise to Improve Patient Outcomes or an Inaccessible Investment?. Current cardiology reports. 2024. doi:10.1007/s11886-024-02146-y
Martinez-Gonzalez MA, Planes FJ, Ruiz-Canela M, et al. Recent advances in precision nutrition and cardiometabolic diseases. Revista espanola de cardiologia (English ed.). 2024. doi:10.1016/j.rec.2024.09.003
Kany S, Al-Alusi MA, Rämö JT, et al. Associations of "Weekend Warrior" Physical Activity With Incident Disease and Cardiometabolic Health. Circulation. 2024. doi:10.1161/CIRCULATIONAHA.124.068669
Cho SMJ, Rivera R, Koyama S, et al. Improving Cardiovascular Disease Primary Prevention Treatment Thresholds in a New England Health Care System. JACC. Advances. 2024;3(10):101257. doi:10.1016/j.jacadv.2024.101257
Petrone G, Turker I, Natarajan P, Bolton KL. Clinical and Therapeutic Implications of Clonal Hematopoiesis. Annual review of genomics and human genetics. 2024;25(1):329-351. doi:10.1146/annurev-genom-120722-100409
Li Y, Ma K, Dong Z, et al. Frameshift variants in C10orf71 cause dilated cardiomyopathy in human, mouse, and organoid models. The Journal of clinical investigation. 2024;134(12). doi:10.1172/JCI177172
Linna-Kuosmanen S, Schmauch E, Galani K, et al. Transcriptomic and spatial dissection of human ex vivo right atrial tissue reveals proinflammatory microvascular changes in ischemic heart disease. Cell reports. Medicine. 2024;5(5):101556. doi:10.1016/j.xcrm.2024.101556
Hamaya R, Sun Q, Li J, et al. 24-hour urinary sodium and potassium excretions, plasma metabolomic profiles, and cardiometabolic biomarkers in US adults: A cross-sectional study. The American journal of clinical nutrition. 2024. doi:10.1016/j.ajcnut.2024.05.010
Hamaya R, Sun Q, Li J, et al. 24-hour urinary sodium and potassium excretions, plasma metabolomic profiles, and cardiometabolic biomarkers in US adults: A cross-sectional study. The American journal of clinical nutrition. 2024. doi:10.1016/j.ajcnut.2024.05.010
Drouard G, Mykkänen J, Heiskanen J, et al. Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data. BMC medical informatics and decision making. 2024;24(1):116. doi:10.1186/s12911-024-02521-3