CoREST complex inhibition alters RNA splicing to promote neoantigen expression and enhance tumor immunity.
| Authors | |
| Keywords | |
| Abstract | Epigenetic macromolecular enzyme complexes tightly regulate gene expression at the chromatin level and have recently been found to colocalize with RNA splicing machinery during active transcription; however, the precise functional consequences of these interactions are uncertain. Here, we identify unique interactions of the CoREST repressor complex (LSD1-HDAC1-CoREST) with components of the RNA splicing machinery and their functional consequences in tumorigenesis. Using mass spectrometry, in vivo binding assays, and cryo-EM, we find that CoREST complex-splicing factor interactions are direct and perturbed by the CoREST complex selective inhibitor, corin, leading to extensive changes in RNA splicing in melanoma and other malignancies. Moreover, these corin-induced splicing changes are shown to promote global effects on oncogenic and survival-associated splice variants, leading to a tumor-suppressive phenotype. Using machine learning models, MHC IP-MS, and ELISpot assays, we identify thousands of neopeptides derived from unannotated splice sites that generate corin-induced splice-neoantigens that are demonstrated to be immunogenic in vitro. Corin is further shown to reactivate the response to immune checkpoint blockade, effectively sensitizing tumors to anti-PD-1 immunotherapy. These data position CoREST complex inhibition as a unique therapeutic opportunity that perturbs oncogenic splicing programs while also creating tumor-associated neoantigens that enhance the immunogenicity of current therapeutics. |
| Year of Publication | 2026
|
| Journal | JCI insight
|
| Volume | 11
|
| Issue | 2
|
| Date Published | 01/2026
|
| ISSN | 2379-3708
|
| DOI | 10.1172/jci.insight.190287
|
| PubMed ID | 41364533
|
| Links |