A biological-systems-based analysis using proteomic and metabolic network inference reveals mechanistic insights into hepatic steatosis.
| Authors | |
| Keywords | |
| Abstract | OBJECTIVE: To delineate organ-specific and systemic drivers of metabolic dysfunction-associated steatotic liver disease (MASLD), we applied integrative causal inference across clinical, imaging, and proteomic domains in individuals with and without type 2 diabetes (T2D).METHODS: Bayesian network analyses and complementary two-sample Mendelian randomization were used to quantify causal pathways linking adipose distribution, glycemia, and insulin dynamics with liver fat in the IMI-DIRECT prospective cohort study. Data included frequently sampled metabolic challenge tests, MRI-derived abdominal and hepatic fat content, serological biomarkers, and Olink plasma proteomics from 331 adults with new-onset T2D and 964 adults without diabetes, with harmonized protocols enabling replication.RESULTS: High basal insulin secretion rate (BasalISR), estimated via C-peptide deconvolution, emerged as the primary potential causal driver of liver fat accumulation in both cohorts. BasalISR, a clearance-independent measure of β-cell insulin output distinct from peripheral insulin levels, was independently linked to hepatic steatosis. Visceral adipose tissue exhibited bidirectional associations with liver fat, suggesting a self-reinforcing metabolic loop. Of 446 analyzed proteins, 34 mapped to these metabolic networks (27 in the non-diabetes network, 18 in the T2D network, and 11 shared). Key proteins directly associated with liver fat included GUSB, ALDH1A1, LPL, IGFBP1/2, CTSD, HMOX1, FGF21, AGRP, and ACE2. Sex-stratified analyses identified GUSB in females and LEP in males as the strongest protein predictors of liver fat.CONCLUSIONS: BasalISR may better capture early β-cell-driven disturbances contributing to MASLD. These findings outline a multifactorial, sex- and disease stage-specific proteo-metabolic architecture of hepatic steatosis and identify potential biomarkers or therapeutic targets. |
| Year of Publication | 2026
|
| Journal | Metabolism: clinical and experimental
|
| Pages | 156552
|
| Date Published | 02/2026
|
| ISSN | 1532-8600
|
| DOI | 10.1016/j.metabol.2026.156552
|
| PubMed ID | 41655955
|
| Links |