Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space.
| Authors | |
| Keywords | |
| Abstract | Systematic and quantitative measurements of the roles of stereochemistry and skeleton-dependent conformational restriction were made using multidimensional screening. We first used diversity-oriented synthesis to synthesize the same number (122) of [10.4.0] bicyclic products (B) and their corresponding monocyclic precursors (M). We measured the ability of these compounds to modulate a broad swath of biology using 40 parallel cell-based assays. We analyzed the results using statistical methods that revealed illuminating relationships between stereochemistry, ring number, and assay outcomes. Conformational restriction by ring-closing metathesis increased the specificity of responses among active compounds and was the dominant factor in global activity patterns. Hierarchical clustering also revealed that stereochemistry was a second dominant factor; whereas the stereochemistry of macrocyclic appendages was a determinant for bicyclic compounds, the stereochemistry of the carbohydrates was a determinant for the monocyclic compounds of global activity patterns. These studies illustrate a quantitative method for measuring stereochemical and skeletal diversity of small molecules and their cellular consequences. |
| Year of Publication | 2004
|
| Journal | J Am Chem Soc
|
| Volume | 126
|
| Issue | 45
|
| Pages | 14740-5
|
| Date Published | 2004 Nov 17
|
| ISSN | 0002-7863
|
| DOI | 10.1021/ja048170p
|
| PubMed ID | 15535697
|
| Links |