Caicedo JC, Cooper S, Heigwer F, et al. Data-analysis strategies for image-based cell profiling. Nat Methods. 2017;14(9):849-863. doi:10.1038/nmeth.4397
van Galen P, Hovestadt V, Ii MHW, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell. 2019;176(6):1265-1281.e24. doi:10.1016/j.cell.2019.01.031
Christiansen EM, Yang SJ, Ando M, et al. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell. 2018;173(3):792-803.e19. doi:10.1016/j.cell.2018.03.040
Najm FJ, Strand C, Donovan KF, et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol. 2018;36(2):179-189. doi:10.1038/nbt.4048
Yang SJ, Berndl M, Ando M, et al. Assessing microscope image focus quality with deep learning. BMC Bioinformatics. 2018;19(1):77. doi:10.1186/s12859-018-2087-4
Knijnenburg TA, Wang L, Zimmermann MT, et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23(1):239-254.e6. doi:10.1016/j.celrep.2018.03.076
Way GP, Sanchez-Vega F, La K, et al. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep. 2018;23(1):172-180.e3. doi:10.1016/j.celrep.2018.03.046
Boehm JS, Garnett MJ, Adams DJ, et al. Cancer research needs a better map. Nature. 2021;589(7843):514-516. doi:10.1038/d41586-021-00182-0
Iqbal S, Pérez-Palma E, Jespersen JB, et al. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Proc Natl Acad Sci U S A. 2020;117(45):28201-28211. doi:10.1073/pnas.2002660117
Way GP, Kost-Alimova M, Shibue T, et al. Predicting cell health phenotypes using image-based morphology profiling. Mol Biol Cell. 2021;32(9):995-1005. doi:10.1091/mbc.E20-12-0784