Boehm JS, Garnett MJ, Adams DJ, et al. Cancer research needs a better map. Nature. 2021;589(7843):514-516. doi:10.1038/d41586-021-00182-0
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13(10):e1005807. doi:10.1371/journal.pcbi.1005807
Iqbal S, Pérez-Palma E, Jespersen JB, et al. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Proc Natl Acad Sci U S A. 2020;117(45):28201-28211. doi:10.1073/pnas.2002660117
Li T, Kim A, Rosenbluh J, et al. GeNets: a unified web platform for network-based genomic analyses. Nat Methods. 2018;15(7):543-546. doi:10.1038/s41592-018-0039-6
Way GP, Kost-Alimova M, Shibue T, et al. Predicting cell health phenotypes using image-based morphology profiling. Mol Biol Cell. 2021;32(9):995-1005. doi:10.1091/mbc.E20-12-0784
Steinhoff G, Nesteruk J, Wolfien M, et al. Cardiac Function Improvement and Bone Marrow Response -: Outcome Analysis of the Randomized PERFECT Phase III Clinical Trial of Intramyocardial CD133 Application After Myocardial Infarction. EBioMedicine. 2017;22:208-224. doi:10.1016/j.ebiom.2017.07.022
Bohnenberger H, Kaderali L, Ströbel P, et al. Comparative proteomics reveals a diagnostic signature for pulmonary head-and-neck cancer metastasis. EMBO Mol Med. 2018;10(9). doi:10.15252/emmm.201708428
Simm J, Klambauer G, Arany A, et al. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery. Cell Chem Biol. 2018;25(5):611-618.e3. doi:10.1016/j.chembiol.2018.01.015
Bray MA, Carpenter AE. Quality Control for High-Throughput Imaging Experiments Using Machine Learning in Cellprofiler. Methods Mol Biol. 2018;1683:89-112. doi:10.1007/978-1-4939-7357-6_7
Kosmicki JA, Sochat V, Duda M, Wall DP. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl Psychiatry. 2015;5:e514. doi:10.1038/tp.2015.7