Eulenberg P, Köhler N, Blasi T, et al. Reconstructing cell cycle and disease progression using deep learning. Nat Commun. 2017;8(1):463. doi:10.1038/s41467-017-00623-3
Caicedo JC, Cooper S, Heigwer F, et al. Data-analysis strategies for image-based cell profiling. Nat Methods. 2017;14(9):849-863. doi:10.1038/nmeth.4397
van Galen P, Hovestadt V, Ii MHW, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell. 2019;176(6):1265-1281.e24. doi:10.1016/j.cell.2019.01.031
Christiansen EM, Yang SJ, Ando M, et al. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell. 2018;173(3):792-803.e19. doi:10.1016/j.cell.2018.03.040
Najm FJ, Strand C, Donovan KF, et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol. 2018;36(2):179-189. doi:10.1038/nbt.4048
Yang SJ, Berndl M, Ando M, et al. Assessing microscope image focus quality with deep learning. BMC Bioinformatics. 2018;19(1):77. doi:10.1186/s12859-018-2087-4
Knijnenburg TA, Wang L, Zimmermann MT, et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23(1):239-254.e6. doi:10.1016/j.celrep.2018.03.076
Way GP, Sanchez-Vega F, La K, et al. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep. 2018;23(1):172-180.e3. doi:10.1016/j.celrep.2018.03.046
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581-1592. doi:10.1016/j.cell.2018.05.015
Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217-221. doi:10.1038/nature22991