Meyers RM, Bryan JG, McFarland JM, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779-1784. doi:10.1038/ng.3984
Over B, McCarren P, Artursson P, et al. Impact of stereospecific intramolecular hydrogen bonding on cell permeability and physicochemical properties. J Med Chem. 2014;57(6):2746-54. doi:10.1021/jm500059t
Schäfer M, Klein HU, Schwender H. Integrative analysis of multiple genomic variables using a hierarchical Bayesian model. Bioinformatics. 2017;33(20):3220-3227. doi:10.1093/bioinformatics/btx356
Afik S, Yates KB, Bi K, et al. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res. 2017;45(16):e148. doi:10.1093/nar/gkx615
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13(10):e1005807. doi:10.1371/journal.pcbi.1005807
Willems T, Zielinski D, Yuan J, Gordon A, Gymrek M, Erlich Y iv. Genome-wide profiling of heritable and de novo STR variations. Nat Methods. 2017;14(6):590-592. doi:10.1038/nmeth.4267
Cassa CA, Weghorn D, Balick DJ, et al. Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat Genet. 2017;49(5):806-810. doi:10.1038/ng.3831
Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-60. doi:10.1126/science.1208130
Pevzner PA, Dančík V, Tang CL. Mutation-tolerant protein identification by mass spectrometry. J Comput Biol. 2000;7(6):777-87. doi:10.1089/10665270050514927
Pradines JR, Farutin V, Rowley S, Dančík V. Analyzing protein lists with large networks: edge-count probabilities in random graphs with given expected degrees. J Comput Biol. 2005;12(2):113-28. doi:10.1089/cmb.2005.12.113