Basu A, Mitra R, Liu H, Schreiber SL, Clemons PA. RWEN: response-weighted elastic net for prediction of chemosensitivity of cancer cell lines. Bioinformatics. 2018;34(19):3332-3339. doi:10.1093/bioinformatics/bty199
Wang X, Philip VM, Ananda G, et al. A Bayesian Framework for Generalized Linear Mixed Modeling Identifies New Candidate Loci for Late-Onset Alzheimer’s Disease. Genetics. 2018;209(1):51-64. doi:10.1534/genetics.117.300673
Haesemeyer M, Robson DN, Li JM, Schier AF, Engert F. A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. Neuron. 2018;98(4):817-831.e6. doi:10.1016/j.neuron.2018.04.013
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-3100. doi:10.1093/bioinformatics/bty191
Naj AC, Lin H, Vardarajan BN, et al. Quality control and integration of genotypes from two calling pipelines for whole genome sequence data in the Alzheimer’s disease sequencing project. Genomics. 2019;111(4):808-818. doi:10.1016/j.ygeno.2018.05.004
Way GP, Kost-Alimova M, Shibue T, et al. Predicting cell health phenotypes using image-based morphology profiling. Mol Biol Cell. 2021;32(9):995-1005. doi:10.1091/mbc.E20-12-0784
Anyansi C, Keo A, Walker BJ, et al. QuantTB - a method to classify mixed Mycobacterium tuberculosis infections within whole genome sequencing data. BMC Genomics. 2020;21(1):80. doi:10.1186/s12864-020-6486-3
Chatterjee S, Chowdhury S, Mallick H, Banerjee P, Garai B. Group regularization for zero-inflated negative binomial regression models with an application to health care demand in Germany. Stat Med. 2018;37(20):3012-3026. doi:10.1002/sim.7804
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581-1592. doi:10.1016/j.cell.2018.05.015
Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun. 2018;9(1):2002. doi:10.1038/s41467-018-04368-5