Ó³»­´«Ã½

Skip to main content
Home

Top menu

  • Careers
Search
  • Ó³»­´«Ã½
      1. This is Ó³»­´«Ã½ Learn about our mission, our values, our history, and partner institutions.
      2. People Meet our members, staff scientists, fellows, leadership, and other Ó³»­´«Ã½ies.
      3. Join Ó³»­´«Ã½ Find out how to join the Ó³»­´«Ã½ as an employee or associate member.
      4. Contact us Find our contact information, directions to our buildings, and directory.
  • Research
      1. Disease areas Ó³»­´«Ã½ brings people together to advance the understanding and treatment of disease.
        1. Items Wpapp col
          • Brain Health
          • Cancer
          • Cardiovascular disease
          • Chronic disease
          • Diabetes
          • Infectious disease and microbiome
          • Kidney disease
          • Obesity
          • Rare disease
      2. Research areas Through programs spanning genetics, biology, artificial intelligence (AI), and therapeutic development, Ó³»­´«Ã½ researchers are making discoveries that drive biomedical science forward.
        1. Items Wpapp col
          • AI and machine learning
          • Chemical biology and therapeutics science
          • Drug discovery
          • Genome regulation, cellular circuitry, and epigenomics
          • Immunology
          • Medical and population genetics
          • Metabolism
      3. Technology areas Our researchers use their expertise in creating, adapting, and applying a variety of technologies to enable science here and beyond.
        1. Items Wpapp col
          • Data sciences
          • Genetic perturbation
          • Genomics
          • Imaging
          • Metabolomics
          • Proteomics
          • Spatial technologies
      4. Science
        1. Patient-partnered research Patients partner with our scientists to accelerate the pace of discovery and find better treatments.
        2. Partnering and licensing We work closely with pharmaceutical, biotech, and technology partners to accelerate the translation of our discoveries.
        3. Publications A catalog of scientific papers published by our members and staff scientists.
        4. Resources, services, and tools Key scientific datasets and computational tools developed by our scientists and their collaborators.
        5. Collaborations and consortia We join with institutions and scientists the world over to address foundational challenges in science and health.
  • Centers
      1. Carlos Slim Center for Health Research The Slim Center aims to bring the benefits of genomics-driven medicine to Latin America, gleaning new insights into diseases with relevance to the region.
      2. Gerstner Center for Cancer Diagnostics The Gerstner Center is developing next-generation diagnostic technology for cancer detection and tracking disease progression.
      3. Klarman Cell Observatory The Klarman Cell Observatory is systematically defining mammalian cellular circuits, how they work together to create tissues and organs, and are perturbed to cause disease.
      4. Merkin Institute for Transformative Technologies in Healthcare The Merkin Institute is supporting early-stage ideas aimed at advancing powerful technological approaches for improving how we understand and treat disease.
      5. Novo Nordisk Foundation Center for Genomic Mechanisms of Disease This center is developing new paradigms and technologies to scale the discovery of biological mechanisms of common, complex diseases, by facilitating close collaborations between the Ó³»­´«Ã½ and the Danish research community.
      6. Eric and Wendy Schmidt Center The EWSC is catalyzing a new field of interdisciplinary research at the intersection of data science and life science, aimed at improving human health.
      7. Stanley Center for Psychiatric Research The Stanley Center aims to reduce the burden of serious mental illness by contributing new insights into pathogenesis, identifying biomarkers, and paving the way toward new treatments.
  • Education and outreach
      1. Art and science connection Explore the connection between art and science and how we bring together artists and Ó³»­´«Ã½ scientists through our artist-in-residence program, gallery exhibitions, and ongoing public conversations.
      2. Ó³»­´«Ã½ Discovery Center Visit our free public educational space that showcases how researchers at the Ó³»­´«Ã½ and their colleagues around the world seek to understand and treat human disease.
      3. Learning resources Access free classroom materials and more for STEM educators, parents, students, tutors, and others.
      4. Public programs Discover remarkable stories of scientific progress, and explore the intersections of science, medicine, and society.
      5. Student opportunities Learn about Ó³»­´«Ã½'s mentored research offerings for high school students, college students, and recent college graduates.
      6. Visit Ó³»­´«Ã½ Come see what Ó³»­´«Ã½ is all about.
  • News
      1. News and insights Learn about breakthroughs from Ó³»­´«Ã½ scientists.
        1. Column
      2. Press room Contact our media relations team.
        1. Column
      3. Sign up for our newsletter Receive regular updates on Ó³»­´«Ã½ news, research and community.
  • Careers
  • Search
The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods.
Wagner BK, Schreiber SL. The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chem Biol. 2016;23(1):3-9. doi:10.1016/j.chembiol.2015.11.008
Read more
Leader of the pack: gene mapping in dogs and other model organisms.
Karlsson EK, Lindblad-Toh K. Leader of the pack: gene mapping in dogs and other model organisms. Nat Rev Genet. 2008;9(9):713-25. doi:10.1038/nrg2382
Read more
Curve-based multivariate distance matrix regression analysis: application to genetic association analyses involving repeated measures.
Salem RM, O’Connor DT, Schork NJ. Curve-based multivariate distance matrix regression analysis: application to genetic association analyses involving repeated measures. Physiol Genomics. 2010;42(2):236-47. doi:10.1152/physiolgenomics.00118.2009
Read more
Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia.
Stitziel NO, Fouchier SW, Sjouke B, et al. Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2013;33(12):2909-14. doi:10.1161/ATVBAHA.113.302426
Read more
Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.
Peloso GM, Auer PL, Bis JC, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94(2):223-32. doi:10.1016/j.ajhg.2014.01.009
Read more
Improved imputation quality of low-frequency and rare variants in European samples using the 'Genome of The Netherlands'.
Deelen P, Menelaou A, van Leeuwen EM, et al. Improved imputation quality of low-frequency and rare variants in European samples using the ’Genome of The Netherlands’. Eur J Hum Genet. 2014;22(11):1321-6. doi:10.1038/ejhg.2014.19
Read more
Structure, function and diversity of the healthy human microbiome.
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14. doi:10.1038/nature11234
Read more
Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion.
Shen H, Cavallero S, Estrada KD, et al. Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res. 2015;105(3):271-8. doi:10.1093/cvr/cvu269
Read more
Mixed model with correction for case-control ascertainment increases association power.
Hayeck TJ, Zaitlen NA, Loh PR, et al. Mixed model with correction for case-control ascertainment increases association power. Am J Hum Genet. 2015;96(5):720-30. doi:10.1016/j.ajhg.2015.03.004
Read more
Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk.
Jansen H, Loley C, Lieb W, et al. Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis. 2015;241(2):419-26. doi:10.1016/j.atherosclerosis.2015.05.033
Read more

Pagination

  • Previous page ‹â¶Ä¹
  • Page 1
  • Page 2
  • Page 3
  • …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Next page ›â¶Äº

Address

Merkin Building
415 Main St.
Cambridge, MA 02142

Follow Us

Home

Sign up for our newsletter

Did you know?

In March of 2020, Ó³»­´«Ã½ converted a clinical genetics processing lab into a large-scale COVID-19 testing facility in less than two weeks.

We've screened more than 1,275 cancer cell lines as part of the Cancer Dependency Map (DepMap).

Ó³»­´«Ã½ Genomics Platform sequences a whole human genome every four minutes.

More than 11,000 individuals living with cancer in the United States and Canada have partnered with Count Me In to share their experiences and help accelerate cancer research.

The Drug Repurposing Hub is one of the most comprehensive and up-to-date biologically annotated collections of FDA-approved compounds in the world. Researchers anywhere can explore more than 6,000 drugs in the hub and search for possible new uses for them to jump-start new drug discovery.

In 2021, our sustainability efforts sent more than 80 percent of waste from the Genomics Platform to either a recycling facility or to an incineration plant that generates electricity.

Through Ó³»­´«Ã½'s Scientists in the Classroom program, Ó³»­´«Ã½ researchers visit every 8th grade classroom in Cambridge each year to talk about genetics and evolution.

Every summer, 18 high school students spend six weeks at Ó³»­´«Ã½ working side-by-side with mentors on cutting-edge research.

In November 2022, Ó³»­´«Ã½â€™s Genomics Platform sequenced its 500,000th whole human genome, a mere four years after sequencing its 100,000th.

By the end of 2022, Ó³»­´«Ã½â€™s COVID-19 testing lab had processed more than 37 million tests.

Working with Addgene, Ó³»­´«Ã½ has shared CRISPR genome-editing reagents with researchers at more than 3,200 institutions in 76 countries.

The NeuroGAP-Psychosis project, a collaboration between the Stanley Center for Psychiatric Research and Harvard T.H. Chan School of Public Health to study the genetics of severe mental illness, has recruited more than 42,000 participants in Ethiopia, Kenya, Uganda, and South Africa.

Footer menu

  • Report a concern
  • Contact Us
  • Privacy Policy

© Ó³»­´«Ã½ 2025