Farrer RA, Ford CB, Rhodes J, et al. Transcriptional Heterogeneity of VGII Compared with Non-VGII Lineages Underpins Key Pathogenicity Pathways. mSphere. 2018;3(5). doi:10.1128/mSphere.00445-18
Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen . mSphere. 2018;3(5). doi:10.1128/mSphere.00403-18
Muñoz JF, Gade L, Chow NA, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9(1):5346. doi:10.1038/s41467-018-07779-6
Shapiro RS, Chavez A, Porter CBM, et al. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nat Microbiol. 2018;3(1):73-82. doi:10.1038/s41564-017-0043-0
Chen Y, Farrer RA, Giamberardino C, et al. Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii. MBio. 2017;8(2). doi:10.1128/mBio.00166-17
Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3(9):541-8. doi:10.1038/nchembio.2007.24
Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science. 2005;310(5748):670-4. doi:10.1126/science.1116739
Cameron DR, Ward DV, Kostoulias X, et al. Serine/threonine phosphatase Stp1 contributes to reduced susceptibility to vancomycin and virulence in Staphylococcus aureus. J Infect Dis. 2012;205(11):1677-87. doi:10.1093/infdis/jis252
Butler G, Rasmussen MD, Lin MF, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657-62. doi:10.1038/nature08064
Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics. 1988;120(4):947-58.