Spatial transcriptomics reveals altered communities and drivers of aberrant epithelia and pro-fibrotic fibroblasts in interstitial lung diseases.

Cell genomics
Authors
Keywords
Abstract

Interstitial lung diseases (ILD) are characterized by fibrotic scarring of the lung parenchyma with remarkably unfavorable prognosis. Using single-nucleus RNA sequencing and spatial transcriptomics, we generated a comprehensive cellular network of the distal lung and its alterations in fibrosis. Integration with histopathology revealed that the transformation of normal parenchyma into fibrotic tissue is accompanied by ectopic bronchiolization and decellularization. Areas of active fibrosis were characterized by co-localization of pro-fibrotic CTHRC1-hi fibroblasts and aberrant transitional epithelial cells. We modeled this maladaptive differentiation of alveolar epithelial cells using organoids, demonstrating that all three pro-inflammatory ligands present in this pathogenic niche, TGF-β, IL-1β, and TNF-α, are jointly required for their induction. Additionally, we identified a requirement for the transcription factor NFATC4 during myofibroblast differentiation driven by soluble factors or mechanosensing. Collectively, this work identifies essential molecular drivers of the cellular interactions underlying lung fibrosis.

Year of Publication
2026
Journal
Cell genomics
Pages
101066
Date Published
01/2026
ISSN
2666-979X
DOI
10.1016/j.xgen.2025.101066
PubMed ID
41576947
Links