Lundberg E, Funke J, Uhlmann V, et al. Which image-based phenotypes are most promising for using AI to understand cellular functions and why?. Cell Syst. 2021;12(5):384-387. doi:10.1016/j.cels.2021.04.012
Imaging Platform
Dobson ETA, Cimini B, Klemm AH, Wählby C, Carpenter AE, Eliceiri KW. ImageJ and CellProfiler: Complements in Open-Source Bioimage Analysis. Curr Protoc. 2021;1(5):e89. doi:10.1002/cpz1.89
Levet F, Carpenter AE, Eliceiri KW, Kreshuk A, Bankhead P, Haase R. Developing open-source software for bioimage analysis: opportunities and challenges. F1000Res. 2021;10:302. doi:10.12688/f1000research.52531.1
Carey KL, Paulus GLC, Wang L, et al. TFEB Transcriptional Responses Reveal Negative Feedback by BHLHE40 and BHLHE41. Cell Rep. 2020;33(6):108371. doi:10.1016/j.celrep.2020.108371
McQuin C, Goodman A, Chernyshev V, et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 2018;16(7):e2005970. doi:10.1371/journal.pbio.2005970
Doan M, Vorobjev I, Rees P, et al. Diagnostic Potential of Imaging Flow Cytometry. Trends Biotechnol. 2018;36(7):649-652. doi:10.1016/j.tibtech.2017.12.008
Simm J, Klambauer G, Arany A, et al. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery. Cell Chem Biol. 2018;25(5):611-618.e3. doi:10.1016/j.chembiol.2018.01.015
Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141). doi:10.1098/rsif.2017.0387
Becker T, Caicedo J, Singer S, weckmann M, AE C. Combining morphological and migration profiles of in vitro time-lapse data. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). ; 2018. doi:10.1109/ISBI.2018.8363731
Caicedo J, McQuin C, Goodman A, Singh S, Carpenter A. Weakly Supervised Learning of Single-Cell Feature Embeddings. Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2018;2018:9309-9318. doi:10.1109/CVPR.2018.00970